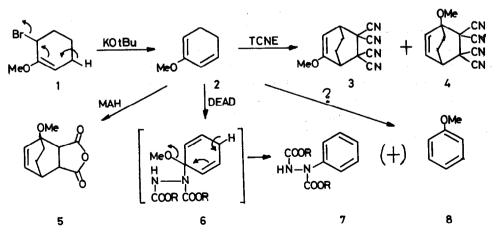
SYNTHESIS AND REACTIONS OF 3,4-DIHYDROANISOLE by


E.R. de Waard, J. Kattenberg and H.O. Huisman, Laboratory for Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 10 September 1970; accepted for publication 1 October 1970)

Dissolving metal reduction of anisole leads to 2,5-dihydroanisole^{1,2} which has been isomerized to 2,3-dihydroanisole by base³ and transition metal complexes⁴. The presence of 3,4-dihydroanisole $\underline{2}$ has never been demonstrated in these equilibria. In situ isomerization Diels-Alder experiments with 2,5-dihydroanisole failed to give products derived from $\underline{2}$ as was the case with pyrolytic decarboxylation of 1,4-dihydro-2-methoxybenzoic acid⁵. Enol-etherification experiments on cyclohex-2enone followed by Diels-Alder reaction have given indications of products derived through the intermediacy of $\underline{2}^5$.

We now wish to report a smooth synthesis of the hitherto unknown 3,4-dihydroanisole 2 and some of its reactions.

Treatment of $\underline{1}^6$ with KOtBu in DME during fifteen hr. at r.t. followed by filtration of the precipitated KBr and destillation of the filtrate gave pure $\underline{2}$ in 70% yield (b.p. 78-84^O/90 mm, n_D^{20} 1.4843). The structure of $\underline{2}$ is confirmed by the spectral data. IR (neat), sharp and strong absorptions at 1640, 1590, 1235, 1195 and 1160 cm⁻¹. NMR (60 MHz, CCl₄), narrow multiplet at δ 2.10 (C₃ and C₄-H), singlet at δ 3.45 (CH₃O), broad singlet at δ 4.55 (C₂-H) and a narrow multiplet at δ 5.75 (C₅ and C₆-H). UV (C₂H₅OH) λ_{max} 268 nm (ϵ 2230), (cyclohexane) λ_{max} 268 nm (ϵ 2380).

4427

The diene $\underline{2}$ can be stored at -30° indefinitely and the solution in non protic solvents is stable for several days at r.t. When dissolved in chloroform commonly used for IR spectroscopy a fast decomposition takes place to a mixture containing anisole, 2,5- and 2,3-dihydroanisole and at least two other products of higher degree of saturation, presumably arizing from acid catalyzed disproportionation and polymerization. The presence of the 2,5-dihydroisomer - easily recognizable by its characteristic signals in NMR - is significant, since it sheds some light on the relative stabilities of the dienes.

Diels-Alder reaction of $\underline{2}$ with TCNE in DME at r.t. gave a crystalline precipitate after twelve hr. containing the adducts $\underline{3}$ and $\underline{4}$ in a ratio of 10 : 1 in addition to coprecipitated TCNE. Recrystallization from chloroform gave the main product $\underline{3}$ in an almost pure state (m.p. 135-140°, 68%), IR (KBr), 1645 cm⁻¹ (enol-ether). NMR (100 MHz, CDCl₃), quartet at δ 5.20 (C₃-H), singlet at δ 3.70 (CH₃0), multiplets at δ 3.57 and δ 3.32 (C₄ and C₁-H) respectively. The minor adduct $\underline{4}$ could not be obtained free from $\underline{3}$ but could be recognized in the NMR spectrum of the mixture : multiplet at δ 6.70 (C₂ and C₃-H), singlet at δ 3.60 (CH₃0), and a multiplet at δ 3.6 (C₄-H).

The reaction of 2 with maleic anhydride in refluxing benzene gave the adduct 5 derived from 2,3-dihydroanisole in moderate yield in addition to polymeric material from which it could be separated by column chromatography.

Reaction of $\underline{2}$ with diethyl azodicarboxylate at -20° in pentane gave a reaction mixture which could be separated by column chromatography into $\underline{7}$, $\underline{8}$ and hydrazodicarboxylate, all three in ca. 20% yield. A reasonable explanation for the formation of $\underline{7}$ seems to be an addition abstraction mechanism leading to $\underline{6}$ followed by loss of methanol. No compounds derived from other modes of addition⁷ of the azodicarboxylate have been detected. The anisole may have been formed from the same intermediate or by direct oxidation of $\underline{2}$.

Further properties of 2 are under investigation.

References

- * To whom correspondence can be addressed.
- 1. A.J.Birch, Quarterly Reviews 4, 69 (1950)
- 2. A.L.Wilds, N.A.Nelson, J.Am.Chem.Soc. 75, 5360 (1953)
- 3. A.J.Birch, D.N.Butler, J.B.Siddall, J.Chem.Soc. 2932 (1964)
- 4. A.J.Birch, G.S.R.Subba Rao, Tetrahedron Letters 3797 (1968)
- 5. I.Alfaro c.s., Tetrahedron 26, 201 (1970)
- 6. E.Garbisch Jr., J.Org.Chem. <u>30</u>, 2109 (1965)
- 7. E.Koerner von Gustorf c.s., J.Org.Chem. 35, 1155 (1970)